
Errata for ‘Using MPI, 2nd Edition’

September 19, 2003

p xvii The third line from the bottom should be “MPICH. Appendix C”.

Thanks to Bryan Putnam <bfp@purdue.edu>.

p 6 The 5th line from the bottom has an extra “the” in it; the end of that line
should be “not the same”.

Thanks to Bryan Putnam <bfp@purdue.edu>.

p 12 The last sentance should end

in a more tutorial approach in [66].

Thanks to Bryan Putnam <bfp@purdue.edu>.

p 42 The 5th line from the top reads

if (rank .gt. rows)

but should read

if (myid .gt. rows)

Thanks to Weiqun Zhang <zhang@ucolick.org>.

p 48 The declaration of ans should use MAX_BCOLS:

double precision buffer(MAX_ACOLS), ans(MAX_ACOLS)

should be

double precision buffer(MAX_ACOLS), ans(MAX_BCOLS)

Thanks to Bryan Putnam <bfp@purdue.edu>.

p 48–51 The example code here uses user-defined state numbers in the MPE
logging calls (e.g., MPE_DESCRIBE_STATE). While this works with stand-
alone logging, it is not compatible with the automatic logging that is
available with MPICH. Applications should consider using the routine
MPE_Log_get_event_number to get state numbers rather than defining
them.

Thanks to Anthony Chan <chan@mcs.anl.gov>.

1

p 48–51 There are a few errors in the examples in Figures 3.10, 3.11, and 3.12.
In Figure 3.10, the variable master should be initialized to zero.

If Figure 3.12, all of the calls to MPI_LOG_EVENT need an additional argu-
ment IERR at the end of the argument list; i.e.,

call MPE_LOG_EVENT(2, 0, "bend", ierr)

Note that laster versions of the Fortran MPE routines return the error
code as the value of the function, and hence would nee

ierr = MPE_LOG_EVENT(2, 0, "bsend")

In Figure 3.11 on page 50, the call to MPI_BCAST is not shown in the code.
The call is referred to at the line

.... initialization of a and b, broadcast of b

but the code itself is not shown. It is the same as in Figure 3.12:

do 85 i = 1,bcols
call MPI_BCAST(b(1,i), brows, MPI_DOUBLE_PRECISION, master, &

MPI_COMM_WORLD, ierr)
85 continue

Thanks to Hartmut Kapitza <hartmut.kapitza@gkss.de>.

p 57 The value of INT_MAX must correspond to the range used by the random
routine. Linux users can use RAND_MAX; for greatest portability, values
returned from random should be discarded if they are too large. The
following code replaces the code in the master for filling the rands array:

if (request) {
for (i = 0; i < CHUNKSIZE;) {

rands[i] = random();
if (rands[i] <= INT_MAX) i++;

}

Thanks to Kevin T. Pedretti <pedretti@eng.uiowa.edu>.

p 58 The call to MPI_Comm_free should be moved into the worker process
branch of the if.

Thanks to Kevin T. Pedretti <pedretti@eng.uiowa.edu>.

p 64 In the second paragraph from the bottom, “some compilers” should be
“Some compilers”.

p 65 In the second item (Expecting argc etc.), “this allows” should be “This
allows”.

2

p 72 The code in Figure 4.2 has a misplaced parenthesis and should be

integer i, j, n
double precision u(0:n+1,0:n+1), unew(0:n+1,0:n+1)
do 10 j=1, n

do 10 i=1, n
unew(i,j) = &

0.25*(u(i-1,j)+u(i,j+1)+u(i,j-1)+u(i+1,j) - &
h * h * f(i,j))

10 continue

Thanks to Steven Knudsen <sknudsen@softwareresearch.org>.

p 97 The legend for Figure 4.17 should say

Predicted time for a 1-D (solid) and 2-D (dashed) decompo-
sition of the 2-D Poisson problem

Thanks to Paul Hovland <hovland@mcs.anl.gov>.

p 99 The near the bottom of the page has a misplaced parenthesis and should
be

integer i, j, n
double precision u(sx-1:ex+1,sy-1:ey+1), &

unew(sx-1:ex+1,sy-1:ey+1)
do 10 j=sy+1, ey-1

do 10 i=sx+1, ex-1
unew(i,j) = &

0.25*(u(i-1,j)+u(i,j+1)+u(i,j-1)+u(i+1,j) - &
h * h * f(i,j))

10 continue

p 100 The first argument to the MPI_TYPE_VECTOR call in the middle of the
page should be ey-sy+1 since only the interior points of the mesh are
communicated. The text in the last full paragraph on the page should
read

. . . In this example, there is one double-precision item per
block; the double-precision values are ex + 1 - (sx - 1) + 1
= ex - sx + 3 apart, and there are ey - (sy) + 1 = ey -
sy + 1 of them, since only the interior elements are needed.
. . .

p 100 The sentance after the call MPI_TYPE_COMMIT should read

The arguments to MPI_Type_vector describe a block, which
consists of a number of (contiguous) copies of the input datatype
given by the third argument. The first argument is the number
of blocks; the second is the number

3

Thanks to Hartmut Kapitza <hartmut.kapitza@gkss.de>.

p 104 The code in Figure 4.22 has a misplaced parenthesis and should be

integer i, j, n
double precision u(sx-1:ex+1,sy-1:ey+1), &

unew(sx-1:ex+1,sy-1:ey+1)
do 10 j=sy+1, ey-1

do 10 i=sx+1, ex-1
unew(i,j) = &

0.25*(u(i-1,j)+u(i,j+1)+u(i,j-1)+u(i+1,j) - &
h * h * f(i,j))

10 continue

p 105 The computed goto in the example should refer to status(MPI_TAG),
not status(MPI_TAG,idx), since for MPI_Waitany, only a single status
value is returned. However, because 4 of the requests are sends instead of
receives, it would be better to use the idx value returned by MPI_Waitany;
this indicates which request has completed. A cleaner solution moves the
wait on the sends to a separate step, using MPI_Waitall for them (this
uses the MPI-2 MPI_STATUSES_IGNORE to simplify the Waitall call):

do 100 k=1, 4
call MPI_WAITANY(4,requests,idx,status,ierr)
goto (1,2,3,4), idx
...

enddo
call MPI_WAITALL(4, requests(4), MPI_STATUSES_IGNORE, ierr)

Thanks to jose@frenadol.ti.uam.es.

p 114 ”descuss” should be “discuss” in the first line of the page

Thanks to Rusty Lusk <lusk@mcs.anl.gov>.

p 121 In the second example using MPI_Allgather, counts should be totalcount,
where totalcount is the sum of the values in the array counts:

MPI_Allgather(myparticles, count, particletype,
allparticles, totalcount, particletype, MPI_COMM_WORLD);

Thanks to Dinesh Kaushik <kaushik@mcs.anl.gov>.

p 123 Not actually an errata, but a clarification. After the example at the
end of section 5.2.1, add a paragraph that explains why there are MPI
datatypes for both the sender and receiver, particularly for MPI_Gather
and MPI_Allgather. In case you are wondering, the reason is that MPI
requires only that the type signatures match; for example, by using a

4

different MPI datatype for the send and receive types, the data can be
transposed “on the fly”. For example, the send type could specify a row
of a matrix (stored in column-major, with n columns) with a sendcount
of 1 and the receive type could specify contiguous doubles with a receive
count of n and receive type of MPI_DOUBLE.

p 124 Line 10 reads

MPI_Start(request);

but should read

MPI_Start(&request);

Thanks to Barry Smith <bsmith@mcs.anl.gov>.

p 155 The second line from the bottom is missing a close parenthesis

Thanks to Rusty Lusk <lusk@mcs.anl.gov>.

p 158 In the 2nd paragraph from the bottom, “particular master/worker”
should be “particularly master/worker”

p 167 The bindings for the MPI_Copy_function and the MPI_Delete_function
should not use pointers to the communicators. This was a change from
MPI 1.0 to MPI 1.1. The correct code is

typedef int MPI Copy function(MPI Comm oldcomm, int *keyval,
void *extra state, void *attribute value in, void *attribute value out,
int *flag)

typedef int MPI Delete function(MPI Comm comm, int *keyval,
void *attribute value, void *extra state)

Thanks to Emil Ong <onge@mcs.anl.gov>.

p 233–268 The following typographic errors were found by Jeffrey Oldham
<oldham@codesourcery.com>:
page paragraph line incorrect correct
233 1 1 code or class) code or class
233 3 3 Fotran Fortran
234 1 4 declearations declarations
237 4 4 unusal unusual
241 4 6 data date
242 2 7 in if
245 1 2 1.0 2.0
245 2 1 introudce introduce
250 0 5 rougly roughly
255 3 5 send sent
266 1 5 long as as long as
268 2 1 the a the

5

p 237 ”stop code)” should be “stop(code))”.

Thanks to Rusty Lusk <lusk@mcs.anl.gov>.

p 240 “gloabl” should be “global” in the last line.

p 268 In Section 9.2.2, “rather is combines” should be “rather it combines”

p 270 At the top of the page, add a comma after the section number “in Section
5.2.5,”

6

